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We describe the architecture of a special purpose computer designed to calculate with high 
precision the critical exponents characterizing the threshold behavior of electrical conductivity 
in random mixtures of conductors-insulators, or superconductors-conductors. The algorithm 
that is used, which determines the architecture, is that of the strip method. Computations are 
being done in 64-bit floating point arithmetic, at a rate of 8 MFLOPS. IKZ 1986 Academic PKSS. 
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1. INTRODUCTION 

In many laboratories physicists have begun to set up powerful computing 
systems, using commercially available products, to calculate numbers relevant to 
physics problems recognized to be of particular importance. The main reason is the 
lack of time available, for practical of financial reasons, on present supercomputers. 
It has, for instance, been estimated by Weingarten [ 1 ] that a hundred years of run- 
ning on a Cray 1s are required to obtain meaningful results for the hadronic spec- 
trum in lattice gauge theories. Another reason is simply the desire to acquire a 
knowhow at a time when the use and necessity of powerful computers is spreading 
to many fields. 

Many of the special purpose computers built or planned get their computing 
power from the use of identical processors running in parallel, as for example the 
Caltech hypercube [2]. The project we are concerned with is not of this type. It is a 
very fast processor doing 64-bit floating point arithmetic, at a rate comparable to 
that of the Cray 1s for the physics problem being studied. This is a typical per- 
colation problem of the conductivity of random resistor networks. It is only the 
very recent commercial availability of very fast 64-bit floating point components 
that makes the realization of the project possible, within a reasonable span of time. 
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This paper is organized as follows. In Section II, we describe the physics problem 
and the algorithm we use to solve it. We mention the results obtained previously on 
the Cray 1s. In Section III, we explain with reference to the previous section the 
aim of our project, and the constraints that are implied. We describe the architec- 
ture of the special purpose computer, with emphasis on the very fast processor. 
Other components such as the memory and a random number generator are dis- 
cussed. In Section IV we present the status of our project and the outlook. 

II. THE PHYSICS PROBLEM: CONDUCTIVITY OF RANDOM RESISTOR NETWORKS 

The numbers this special purpose computer is supposed to calculate with high 
precision are the critical exponents of the threshold behavior of electrical conduc- 
tivity in infinite random resistor networks. There are two types of behaviour: 

(i) The first one concerns a random mixture of insulators (resistance r = co ) 
and conductors (resistance r = 1). 

Suppose each link in the network is either a conductor with probability p or an 
insulator with probability 1 -p. For p above a critical value p,, the percolation 
threshold, a current will traverse the network. The conductivity behaves at the 
threshold as (p - p,)’ (see Fig. la). The exponent t characterizes this behavior and 
is believed to be universal (it only depends on the dimension of space). It is 
moreover related to random diffusion and to the spectrum of vibrations on the per- 
colation cluster at pc [3]. 

(ii) The second one concerns a random mixture of superconductors 
(resistance r = 0) and conductors (r = 1). 

Here one supposes that a network link is superconducting with probability p and 
conducting with probability 1 -p. For p approaching the percolation threshold 
pc(p < p,) the conductivity will become infinite, with the characteristic behavior 
(see Fig. lb) (p, - p) -‘, where again s is universal. 

b 

FIG. 1. (a) Threshold behavior (at p,) of conductivity for a random mixture of conductors and 
insulators. (b) Threshold behavior (at p,) of conductivity for a random mixture of conductors and super- 
conductors. 
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FIG. 2. Random mixture of conductors-insulators. Step by step building of the network by adding a 
new link either longitudinal on line a or transverse between G( and p. The top and bottom are perfect 
conductors. There are N current lines and potentials, corresponding to the width of the strip (or the 
transverse section of a bar in three dimensions). L denotes the length of the strip (or bar). 

Our main aim is to increase by an order of magnitude the precision with which 
the exponents t and s are presently known. The algorithm we use to do the 
calculation is based on the strip method [4], which also has lead, up to now, to the 
most precise determinations of t and S. To simulate the infinite medium, one dimen- 
sion (the longitudinal one) is made as large as possible. Finite size effects in the 
transverse directions are handled by finite size scaling arguments, as shown in Ref. 
c4, 51. 

The method is illustrated in the 2-dimensional case in Fig. 2 and Fig. 3 for the 
cases respectively of insulator-conductor and superconductor-conductor networks. 
The network is modelled by a retangular grid, of width N and length L. The 
network is built step by step (at p = p,), where the comparison of a random num- 
ber with pC decides whether the new link is insulating (or conducting) or con- 
ducting (or superconducting). In the first case the top and bottom of the network 
are perfect conductors, in the second case the leftmost part is a perfect conductor, 
and there are periodic boundary conditions from top to bottom. The construction 
of the network consists in adding longitudinal links on line a, and transverse links 
between lines CI and fl (see Fig. 2), and the calculation consists in deriving after each 
addition of a link the new form of the conductance or resistance matrix, relating the 
currents to the potentials. For the insulator-conductor case potentials are fixed and 
currents calculated, and the new elements of the symmetric (N by N) conductance 
matrix after adding a longitudinal or transverse link are given in terms of the old 
ones by 

Ail = A,, - Aa, Ai, 
++A,, 

(longitudinal link ) 

FIG. 3. Random mixture of conductors and superconductors. The description is the same as for 
Fig. 2, except that here there arc periodic boundary conditions from top to bottom, and the left-hand 
side of the strip (or bar) is now a perfect conductor. 



ELECTRICAL CONDUCTIVITY OF DISORDERED MEDIA 383 

and 

Ajj=Aij+~(6,,-6,)(6,,-6,j) (transverse link) (2) 

where 1 < i, j < N, and r = co or r = 1 according to whether the link is insulating or 
conducting. Details about this method are given in Ref. [4]. 

For the case of a conductor-superconductor mixture, currents are fixed and 
potentials calculated and the new elements of the (symmetric) Nx N resistance 
matrix are given in terms of the old ones by 

and 

Rij = Rii + r 6, 13%~ (longitudinal link) (3) 

Rij = Rij - (Ria - RiD)(Raj - R,,) 
r+&, +RpP-&-RPa 

(transverse link ) (4) 

where 16 i, j < N, and r = 1 or r = 0 according to whether the link is conducting or 
superconducting. (For details see Ref. [S].) 

For N fixed, as the length L tends to infinity, the conductivity cr,,, is given in the 
two cases by 

(3 -limA,, or o;l=lim%, 
N-L+cc L L-r 

the convergence towards these values being like l/A. As mentioned above, the 
relevant exponent is extracted by using finite size scaling in the width N, which 
requires calculations to be performed at different values of N. 

The results obtained on a Cray 1S by this method of strips of width N and length 
L, as well as the corresponding running time, are summarized in Table I. In three 
dimensions the strip is replaced by a bar of length L and the transverse cross sec- 

TABLE I 

Space dimension d=2 d=3 

Bond-percolation 
threshold 0.5 0.2492 

tars t=s=1.30~0.01 r=1.9_+0.1 s = 0.75 f 0.04 
Strip size N<20, L< 10' NG441, L< 10' N< 100, L Q lo6 

Computing time 
on Cray 1s 5 hours 3 hours 25 hours 

Nore. This table gives results obtained up to now by the strip method on a Cray lS, including the 
computing time. These results are the best available. For d= 2 it can be shown that one has t = s. Note 
that there exists no result at d=4. 



384 HAYOTETAL. 

tion contains a number N of network sites. Let us point out that the precision of 
the results only depends on the length L of the network that fits into a given com- 
puter time. 

III. ARCHITECTURE OF THE SPECIAL PURPOSE COMPUTER 

Our aim is to increase lo-fold the precision of the numbers in Table I. Since this 
precision goes as the square root of L, lengths L, of the order of 109, a hundred 
times longer than those considered up to now, have to be introduced. This means a 
hundred times longer computation times on a Cray 1s than those given in Table I. 
The update of one element of the conductance or resistance matrix takes between 
60 and 100 nsec on the Cray. Two requirements as to the performance of a very fast 
special purpose computer result: 

(i) speed: the processor has to work at a clock rate giving a performance 
equivalent to that of a supercomputer; 

(ii) precision: only 64-bit floating point arithmetic will do, because one must 
be able to distinguish from a number of the order of L = lo9 2: 2”’ the resistance of 
unity that is added to the strip. 

Both requirements are satisfied as far as components are concerned by using 
Weitek’s 64-bit ALU (WTL 1065) and multiplier (WTL 1064), the first one turning 
out a result every 120 nsec (in the pipeline mode) and the second one every 
480 nsec. 

The architecture of the very fast processor, built from these arithmetic com- 
ponents, reflects closely the structure of the algorithm. The algorithm is based on 
formulae (1) to (4), and the most complicated of these (formula (4)) determines the 
minimum complexity required for the structure of the processor. 

In fact it is modified formula (4) that is used. Experience with the Cray shows 
that in order to increase precision, calculations involving the differences of two 
large numbers, such as R, -R, in (4) ought to be avoided. (The Ri,‘s increase 
proportionally to L.) At each update of the resistance matrix, it is therefore better 
to calculate not Rij but a modified matrix 

r?ii = Ri, -ii,, - v, v,, 
where 

vi = aim - R, 
fi’ 

D = r + w,, + RPa - R,, - R,,. 

At each step the w,, is subtracted. The successive ii,,‘s are accumulated in the 
memory in order to give the true R,, . There are two independent Random Access 
Memories (RAM) (Fig 4), the sizes of which are determined by the fact that we 
want to consider values of N up to 256- and 64-bit words: 
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1 I 

6L Mem 2 

Bus 4L 

,764 6L (32 

FIG. 4. Architecture of the processor, using Weitek components: two ALU’s (WTL 106.5), four mul- 
tipliers (WTL 1064), and two register files (WTL 1066), which handle 64-bit floating point numbers. 
There are two independent memories, 1 and 2. 

(a) Memory 2, of 2 Kbytes, which provides storage for the N-dimensional 
vector V,. 

(b) Memory 1, of 512 Kbytes, which is the main memory containing the 
matrix elements. This memory is a simplified and faster version (access time of 
35 nsec) of the memory used in the construction of the IBM 3081/E emulator [6]. 

The aim of the calculation of formula (4bis) is to update a matrix element every 
120 nsec. The main pipeline does simultaneously the N(N+ 1)/2 substractions 
1, - 8,, (the matrix is symmetric) and the N(N+ 1)/2 multiplications Vi by V,, 
followed by a subtraction of V, V, from 8, - i?,, (cf. (4bis)). Within every 120 nsec 
an element R, is read from the main memory and a new one &, written into it. To 
implement the above pipeline there are two ALU’s (WTL 1065) numbered 0 and 1 
(cf. Fig 4), and a multiplier consisting of four WTL 1064 chips working sequentially 
in order to turn out a result every 120 nsec (in pipeline mode). A direct access from 
memory 2 to the inputs of the multiplier provides two 64-bit operands V, and V, 
every 120 nsec. Moreover a direct access of memory 1 to ALU 0 equally provides 
this arithmetic unit with two 64-bit operands every 120 nsec, used in the initial 
stages for calculating i?, -& which enters the expression of Vi. 

There are two register tiles WTL 1066 in parallel, providing 32 registers 64-bits 
wide. They are used for transit between ALU 1 and main memory (for R:,), for 
storage of certain numbers, and especially to provide the first approximation for the 
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calculation of l/,,/% (cf. (4bis)). The iterative procedure to reach 64-bit precision 
for l/* involves the multiplier, ALU 1, and register file. 

The performance of this architecture is summarized in Table II, where the time 
required for each step of the calculation is given. It is the pipelined calculation (a 
result every 120 nsec) of the N(N+ 1)/2 matrix elements R,i which as soon as N is 
large enough (N > 20) is the main contribution to the time it takes to update an 
element. The time required for a complete calculation is thus proportional to 
N* x N = N3, there being N transverse links (in 2 dimensions for large N, 2N in 3 
dimensions for large N) in the superconductivity case. The time is also proportional 
to L, the total length of the strip. In the conductivity case the N3 dependence is an 
effective N* because the corresponding matrix has many zeroes [7]. 

Connected to the processor is a random number generator (RNG), which works 
with 32-bit integers. It is of the lagged Fibonacci type, extensively studied by Mar- 
saglia [S]. It calculates a random number from an initial store of 17 numbers (not 
all even) by the recurrence 

X,=(X, -5+xn-17) mod 232 (n >, 18). (5) 

Its period [S] is 231(2’7 - 1)r 2.8 x 1014. 
The RNG is built so it can readily accept bigger sequences than the (5, 17) 

doublet. A random number is calculated according to Eq. (5) in an ALU and com- 
pared to pc. The result of this comparison is either 0 or 1 according to whether the 
random number is bigger or smaller than pc. This signal is stored in an inter- 
mediate latch, which is unloaded whenever needed by the processor in the update of 
a matrix element. The RNG can produce a result every 120 nsec. It has two parallel 
RAM, which simultaneously provide the operands in Eq. (5), two sequential ALU’s 
for addition and comparison, and a microcode in PROM controlling it. 

A sequencer and an address generator will control our fast processor (Fig. 5) 
through a microcode in RAM loaded from the host computer. The microcode will 
provide much of the flexibility of the machine: change of space dimension, super- 

TABLE II 

D Ufi 
Pipeline 1 Pipeline 2 

“difficult” links “easy” links 

Time in I,, 53 (27) 168 17+2N 29+N(N+l) 29 + 2(6) 

Note. Time it takes to perform the successive steps in updating one element. The unit of time is the 
clock cycle (I,~ b 60 nsec). The numbers 17 and twice 29 correspond to start up times for pipelines. 
Pipeline 1 is the calculation of the N component vector V,. Pipeline 2, the main pipeline, is the 
calculation of N(N + 1)/2 matrix elements. “Difftcult” links are the transverse ones for superconductor- 
conductor mixture, the longitudinal ones for conductor-insulator mixture. For “easy” links it is the 
reverse and the update takes 2 t,, in the conductivity case and 6 t,, in the superconductivity one. The 
calculation of D takes 53 t,, (respectively 27) for the superconductivity (respectively conductivity) case. 
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1 t 1 
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FIG. 5. Environment of the fast processor, with sequencer, address generator. and connection to a 

host through VME interface of the 3081/E emulator. 

conductor-conductor versus conductor-insulator, periodic boundary conditions, 
and site instead of bond percolation. 

The fast processor, Memory 1, and RNG will be realized on three printed circuit 
boards plugged into a rack identical to that of the IBM 3081/E emulator. A fourth 
board will be dedicated to the interface between the 3081/E backplane and the host 
computer. 

The host will be the ISADORA built at the high-energy electronics laboratory at 
Saclay from VME standard boards. It contains a Motorola 68000 microprocessor 
with 512-Kbyte memory, an additional double port VME-VMX l-Mbyte memory 
(to rapidly spool memory l), and one floppy and two hard Winchester disks to 
periodically save intermediate results. A connection to a VAX will provide 
additional possibility of storage. The tasks of the host are multiple: running checks, 
loading microcode and initial configuration, saving intermediate results, and 
analysing results. 

IV. STATUS AND OUTLOOK 

The project is well advanced. Most components, in particular the Weitek chips, 
have been delivered or are ordered. The main memory, being similar to that of the 
3081/E emulator, is effectively tested. The time flow diagrams for the pipelines of 
the processor have been drawn. We expect the complete machine to be tested and 
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running by the end of the year. The total budget is about $70,000, half of which is 
used for high-performance testing equipment: logical analyser, and oscilloscope. 

The precise measurements (one order of magnitude improvement) of the dynamic 
percolation exponents s and t in 2 and 3 dimensions and first estimates in 4 dimen- 
sions should help in clarifying their relationships to the geometrical exponents 
characterizing the percolation cluster. These relationships have been the subject of 
many conjectures such as those of Alexander and Orbach [3] and Kertesz [9]. 
Problems similar to the one considered might be studied with the same processor. 
Let us mention the question of anisotropy in 2 dimensions [lo], an extension of 
the present problem to the case where capacitors replace some resistors, and the 
equation of state, which is now a function of frequency and p - pc, can be 
investigated. Let us also mention as a possible, different problem that of the elastic 
constants of a random network. 
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